List of 11 Best Frameworks used by Data Scientists

List of Best Frameworks for Data Scientists

The practice of data science requires the use of machine learning frameworks extensively. Now, this could be for many reasons but largely to automate the processes that drive their business forward.

Data science frameworks enable data scientists to organize, process, model, and interpret data with greater efficiency.

Framework-focused solutions mean data scientists don’t always need to have extensive experience in coding and programming languages, and can instead use their expertise in solving bigger problems on their table. Reports show that 85% of data pros have used at least one ML framework.

Top Frameworks Used by Data Scientists

If you are on your path to becoming a data savy, here’s a list of the 10 best open source ML frameworks available in the market that are reportedly the most used by data science professionals.

Note: The choice of the right tool often depends on the specific needs of the project.

1. TensorFlow

Tensorflow is an open-source machine learning library developed at Google for numerical computation using data flow graphs is arguably one of the best, with Gmail, Uber, Airbnb, Nvidia, and lots of other prominent brands using it. It’s handy for creating and experimenting with deep learning architectures, and its formulation is convenient for data integration such as inputting graphs, SQL tables, and images together.

2. Scikit-learn

Scikit-learn is a very popular open-source machine-learning library for the Python programming language. With constant updations in the product for efficiency improvements coupled with the fact that its open-source makes it a go-to framework for machine learning in the industry.

3. Keras

Keras is an open-source neural network library written in Python. It is capable of running on top of other popular lower-level libraries such as Tensorflow, Theano & CNTK. This one might be your new best friend if you have a lot of data and/or you’re after the state-of-the-art in AI: deep learning.

4. Pandas

Pandas is yet another open-source software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series. Pandas work well with incomplete, messy, and unlabeled data and provide tools for shaping, merging, reshaping, and slicing datasets.

5. Spark MLib

Spark MLib is a popular machine-learning library. As per the survey, almost 6% of the data scientists use this library. This library has support for Java, Scala, Python, and R. Also you can use this library on Hadoop, Apache Mesos, Kubernetes, and other cloud services against multiple data sources.

6. PyTorch

PyTorch is developed by Facebook’s artificial intelligence research group and it is the primary software tool for deep learning after Tensorflow. Unlike TensorFlow, the PyTorch library operates with a dynamically updated graph. This means that it allows you to make changes to the architecture in the process.

7. Matplotlib

Matplotlib is a plotting library for Python, a library mostly used for data visualization by plotting histograms, scatterplot, 3D plot, etc., and also serves as a numerical extension to the Numpy library. It’s the de facto visualization library used in every data science test case in Python as it makes visualizations easy and interactive giving you the power to produce histograms, scatterplot, 3D plot, image plot, bar charts, power spectra, and many more.

8. Numpy

Numpy is an open-source library that gives programmers the versatility to work with matrices and multi-dimensional arrays. It’s the standard library for scientific computing in Python and provides powerful tools for integrating C/C++ and Fortran code. Check out the NumPy tutorial and NumPy practical examples.

9. Seaborn

Seaborn is an open-source Python data visualization library based on matplotlib. The main focus of this package is on the visualization of statistical models. visualizations that include heat maps, those which summarize the data but still depict the overall distributions.

10. Theano

Theano Python library is for numerical computation and is similar to NumPy. Some libraries such as Pylearn2 use Theano as their base component for mathematical computation. Theano helps you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently

11. Spacy

Spacy is an advanced Natural Language Processing (NLP) in Python. It is primarily used for research and industrial applications. It is very fast and efficient.

An advantage of Spacy is that, it comes with pre-trained models that can be used for various NLP tasks. Also, it has an easy to use API with lot of customizations and extensibility.

Here are some other frameworks and tools worth considering.

  1. RandomForest
  2. Xgboost
  3. LightGBM
  4. Apache Spark
  6. ONNX
  7. Jupyter Notebook
  8. Amazon SageMaker for Data Scientists
  9. Google Cloud Datalab


In this blog, I have covered the top frameworks used by Data Scientists. With the advent of cloud-based AI/ML tools, Data scientists can increase their productivity using prebuilt tooling.

If you are someone who is getting started with Data Science, you can try Datacamp free courses which are focused on data science. Also, check out the Datacamp discounts if you want to consider advanced learning from them. You can get free access if you are an educator.

Leave a Reply

Your email address will not be published. Required fields are marked *

You May Also Like